
By :Goutam Sanyal

Course :Computer
System
Architecture

Class :
Sem-1

Lesson :Number System
Contd..

Multiplication (decimal)

143

130

13

11

13

+



Binary Multiplication
The binary multiplication table is simple:

0  0 = 0 | 1  0 = 0 | 0  1 = 0 | 1  1 = 1

Extending multiplication to multiple digits:

Multiplicand 1011

Multiplier x 101

Partial Products 1011

 0000 -

 1011 - -

Product 110111

Multiplication (binary)

10001111

1101000

11010

1101

1011

1101

+



Multiplication (binary)

10001111

1101000

11010

1101

1011

1101

+



It’s interesting to note that binary

multiplication is a sequence of shifts

and adds of the first term (depending

on the bits in the second term.

110100 is missing here because the

corresponding bit in the second

terms is 0.

Multiplication
• Multiplication is much like as you do it in decimal

– Line up the numbers and multiply the multiplicand by one digit
of the multiplier, aligning it to the right column, and then
adding all products together

• but in this case, all values are either going to be multiplied by 0 or 1

– So in fact, multiplication becomes a series of shifts and adds:

110011

* 101001

110011

000000

000000

110011

000000

110011

Add these values

This is the same as:

110011 * 101001 =

110011 * 100000 + 110011 * 00000 +

110011 * 1000 + 110011 * 000 +

110011 * 00 + 110011 * 1

= 110011 * 100000 + 110011 * 1000 + 110011 * 1

We will use a tabular approach for simplicity (see next slides)

Multiplication
Algorithm

A is the accumulator

M and Q are temporary

registers

C is a single bit storing the

carry out of the addition of

A and M

The result is stored in the

combination of registers

A and Q (A storing the upper

half of the product, Q the

lower half)

NOTE: this algorithm works only if both

numbers are positive. If we have negative

values in two’s complement, we will use a

different algorithm

Example
First, load the multiplicand

in M and the multiplier in Q

A is an accumulator along

with the left side of Q

As we shift C/A/Q, we

begin to write over part of Q

(but it’s a part that we’ve

already used in the

multiplication)

For each bit in Q, if 0 then

merely shift C/A/Q,

otherwise add M to C/A

Notice that A/Q stores the

resulting product, not just A

Need 8 bit location to store result of

two 4 bit multiplications

Booth’s Algorithm
Compare rightmost bit of

Q (that is, Q0) with the

previous rightmost bit

from Q (which is stored

in a single bit Q-1)

Q-1 is initialized to 0

If this sequence is 0 – 1

then add M to A

If this sequence is 1 – 0

then sub M from A

If this sequence is 0 – 0

or 1 – 1 then don’t add

After each iteration, shift

A >> Q >> Q-1

We will use

Booth’s algorithm

if either or both

numbers are

negative

The idea is based

on this observation:

0011110 =

0100000 –

0000010

So, in Booth’s,

we look for

transitions of 01

and 10, and ignore

00 and 11 sequences

in our multiplier

Example of Using Booth
Initialize A to 0

Initialize Q to 0011

Initialize M to 0111

Initialize Q-1 to 0

1) Q/Q-1=10, AA–M,

Shift

2) Q/Q-1=11, Shift

3) Q/Q-1=01,AA+M,

Shift

4) Q/Q-1=00, Shift

Done, Answer = 00010101

Division
• Just as multiplication is a series of additions and

shifts, division is a series of shifts and subtractions
– The basic idea is this:

• how many times can we subtract the denominator from the
numerator?

Consider 110011 / 000111

We cannot subtract 000111 from 000001 Our divisor is 0, shift 000001

We cannot subtract 000111 from 000011 Our divisor is 00, shift 00011

We cannot subtract 000111 from 000110 Our divisor is 000, shift 000110

We can subtract 000111 from 001100 Now, our divisor is 0001,

leaving 000101 shift 000101

We can subtract 000111 from 001010 Now our divisor is 00011,

leaving 000101 shift 000101

We can subtract 000111 from 001010 Our divisor is now 000111

leaving 000101

Giving the answer 000111 with a remainder We are done after 6 iterations (6 bits)

of 000101

• Dividend is expressed using 2*n bits
and loaded into the combined A/Q
registers

– upper half in A, lower half in Q

• Notice that we subtract M from A and
then determine if the result is
negative – if so, we restore A,

• An easier approach is:

– Remove A  A – M

– Replace A < 0? With A< M?

– If No, then A  A – M, Qn  1

– If Yes, then Qn  0

– Now we don’t need to worry
about restoring A

• At the conclusion of the operation

– the quotient is in Q

– and any remainder is in A

Division Algorithm This algorithm

only works on

positive values

(unsigned)

We will not cover

a division

algorithm for

two’s complement

Division Example: 7 / 3
A Q M

0000 0111 0011 Initial Values

0000 1110 Shift A/Q left 1 bit

Since A < M, insert 0 into Q0

0001 1100 Shift A/Q left 1 bit

Since A < M, insert 0 into Q0

0011 1000 Shift A/Q left 1 bit

0000 1001 Since A >= M, AA-M, insert 1 into Q0

0001 0010 Shift A/Q left 1 bit

Since A < M, insert 0 into Q0

Done (4 shifts)

Result: Q = 0010, A = 0001

A = remainder (1) and Q = quotient (2) or 7 / 3 = 2 1 / 3

Bias Representation
• We can use unsigned magnitude to represent

both positive and negative numbers by using a
bias, or excess, representation
– The entire numbering system is shifted up some

positive amount
• To get a value, subtract it from the excess

– For instance, in excess-16, we subtract 16 from the
number to get the real value (11001 in excess-16 is 11001
– 10000 in binary = 01001 = +9)

– To use the representation
• numbers have to be shifted, then stored, and then

shifted back when retrieved
– this seems like a disadvantage, so we won’t use it to

represent ordinary integer values

– but we will use it to represent exponents in our floating
point representation (shown next)

Excess-8 Notation

0000 -8

0001 -7

0010 -6

0011 -5

0100 -4

0101 -3

0110 -2

0111 -1

1000 0

1001 1

1010 2

1011 3

1100 4

1101 5

1110 6

1111 7

Floating Point Representation
• Floating point numbers have a floating decimal point

– Recall the fraction notation used a fixed decimal point

– Floating point is based on scientific notation
• 3518.76 = .351876 * 104

• We represent the floating point number using 2 integer values called
the significand and the exponent, along with a sign bit

– The integers are 351876 and 4 for our example above

– For a binary version of floating point, we use base 2 instead of
10 as the radix for our exponent

– We store the 2 integer values plus the sign bit all in binary
• We normalize the floating point number so that the decimal is implied

to be before the first 1 bit, and in shifting the decimal point, we
determine the exponent

• The exponent is stored in a bias representation to permit both positive
and negative exponents

• The significand is stored in unsigned magnitude

Examples
• Here, we use the following 14-bit representation:

Sign bit = 0 (positive)

Exponent = 5 (10101 – 10000 = 5)

Significand = .10001000

We shift the decimal point 5 positions giving us 10001.0 = +17

Sign bit = 0 (positive)

Exponent = -2 (01110 – 10000 = -2)

Significand = .10000000

We shift the decimal point 2 positions to the left,

giving us 0.001 = +.125

Sign bit = 1 (negative)

Exponent = 3 (10011 – 10000 = 3)

Significand = .11010100

We shift the decimal point 3 positions to the right,

giving 110.101= -6.625

Exponents

will be stored

using excess-16

Floating Point Formats and Problems
• To provide a standard for

all architectures, IEEE
provides the following
formats:
– Single precision

• 32-bits: 1-bit sign, 8-bit
exponent using excess-127,
23-bit significand

– Double precision
• 64-bits: 1-bit sign, 11-bit

exponent using excess-
1023, 52-bit significand

– IEEE also provides NAN for
errors when a value is not
a real number

• NAN = not a number

• Problems
– there are numerous ways

to represent the same
number (see page 58), but
because we normalize the
numbers, there will
ultimately be a single
representation for the
number

– Errors arise from
• overflow (too great a

positive number or too
great a negative number) –
overflowing the signficand

• underflow (too small a
fraction) – overflowing the
exponent

Representing Characters
• We use a code to represent characters

– EBCDIC – developed for the IBM 360 and used in all IBM
mainframes since then

• An 8-bit representation for 256 characters

– ASCII – used in just about every other computer
• A 7-bit representation plus the high-order bit used for parity

– Unicode – newer representation to include non-Latin based
alphabetic characters

• 16 bits allow for 65000+ characters

• It is downward compatible with ASCII, so the first 128 characters
are the same as ASCII

– See figures 2.6-2.8

Error Detection
• Errors will still arise,

so we should also
provide error
detection and
correction
mechanisms
– One method is to

add a checksum to
each block of data

• Bits are appended
to every block that
somehow encode
the information

• One common form
is the CRC

– Cyclic
redundancy
check

– see pages 81-84
for details

• Simpler approach is to use a parity bit
to every byte of information
– Add up the number of 1 bits in the byte,

add a bit so that the number of total 1s is
even

• 00101011 has a parity bit of 0, 11100011
has a parity bit of 1

– With more parity bits, we can not only
detect an error, but correct it, or detect 2
errors

• Hamming Codes are a common way to
provide high redundancy on error
checking
– We will skip the discussion on Hamming

Codes, but if you want to read it, its on
pages 84-90 of the textbook)

	Slide 1
	Slide 2
	Slide 3: Multiplication (decimal)
	Slide 4: Binary Multiplication
	Slide 5: Multiplication (binary)
	Slide 6: Multiplication (binary)
	Slide 7: Multiplication
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Division
	Slide 13: Division Algorithm
	Slide 14
	Slide 15: Bias Representation
	Slide 16: Floating Point Representation
	Slide 17: Examples
	Slide 18: Floating Point Formats and Problems
	Slide 19: Representing Characters
	Slide 20: Error Detection

