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Binary Multiplication
The binary multiplication table is simple: 

0  0 = 0  |  1  0 = 0  |  0  1 = 0  |  1  1 = 1 

Extending multiplication to multiple digits: 

Multiplicand 1011 

Multiplier x  101 

Partial Products 1011 

 0000 - 

 1011 - - 

Product 110111 
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It’s interesting to note that binary 

multiplication is a sequence of shifts 

and adds of the first term (depending 

on the bits in the second term.

110100 is missing here because the 

corresponding bit in the second 

terms is 0.



Multiplication
• Multiplication is much like as you do it in decimal

– Line up the numbers and multiply the multiplicand by one digit 
of the multiplier, aligning it to the right column, and then 
adding all products together

• but in this case, all values are either going to be multiplied by 0 or 1

– So in fact, multiplication becomes a series of shifts and adds:

110011 

* 101001

110011

000000

000000

110011

000000

110011   

Add these values

This is the same as:

110011 * 101001 = 

110011 * 100000 + 110011 * 00000 + 

110011 * 1000 + 110011 * 000 + 

110011 * 00 + 110011 * 1

= 110011 * 100000 + 110011 * 1000 + 110011 * 1

We will use a tabular approach for simplicity (see next slides)



Multiplication 
Algorithm

A is the accumulator

M and Q are temporary 

registers

C is a single bit storing the 

carry out of the addition of

A and M

The result is stored in the

combination of registers

A and Q (A storing the upper

half of the product, Q the

lower half)

NOTE:  this algorithm works only if both 

numbers are positive.  If we have negative

values in two’s complement, we will use a 

different algorithm



Example
First, load the multiplicand 

in M and the multiplier in Q

A is an accumulator along 

with the left side of Q

As we shift C/A/Q, we 

begin to write over part of Q 

(but it’s a part that we’ve 

already used in the 

multiplication)

For each bit in Q, if 0 then 

merely shift C/A/Q, 

otherwise add M to C/A

Notice that A/Q stores the 

resulting product, not just A

Need 8 bit location to store result of 

two 4 bit multiplications



Booth’s Algorithm 
Compare rightmost bit of 

Q (that is, Q0) with the 

previous rightmost bit 

from Q (which is stored 

in a single bit Q-1)

Q-1 is initialized to 0

If this sequence is 0 – 1 

then add M to A

If this sequence is 1 – 0 

then sub M from A

If this sequence is 0 – 0 

or 1 – 1 then don’t add

After each iteration, shift 

A >> Q >> Q-1

We will use 

Booth’s algorithm 

if either or both 

numbers are 

negative

The idea is based

on this observation:

0011110 = 

0100000 –

0000010

So, in Booth’s,

we look for

transitions of 01

and 10, and ignore

00 and 11 sequences

in our multiplier



Example of Using Booth
Initialize A to 0

Initialize Q to 0011

Initialize M to 0111

Initialize Q-1 to 0

1) Q/Q-1=10, AA–M, 

Shift

2) Q/Q-1=11, Shift

3) Q/Q-1=01,AA+M,

Shift

4) Q/Q-1=00, Shift

Done, Answer = 00010101



Division
• Just as multiplication is a series of additions and 

shifts, division is a series of shifts and subtractions
– The basic idea is this:

• how many times can we subtract the denominator from the 
numerator?  

Consider 110011 / 000111

We cannot subtract 000111 from 000001 Our divisor is 0, shift 000001

We cannot subtract 000111 from 000011 Our divisor is 00, shift 00011

We cannot subtract 000111 from 000110 Our divisor is 000, shift 000110

We can subtract 000111 from 001100 Now, our divisor is 0001, 

leaving 000101 shift 000101

We can subtract 000111 from 001010 Now our divisor is 00011,

leaving 000101 shift 000101

We can subtract 000111 from 001010 Our divisor is now 000111

leaving 000101

Giving the answer 000111 with a remainder We are done after 6 iterations (6 bits)

of 000101



• Dividend is expressed using 2*n bits 
and loaded into the combined A/Q 
registers

– upper half in A, lower half in Q

• Notice that we subtract M from A and 
then determine if the result is 
negative – if so, we restore A, 

• An easier approach is: 

– Remove A  A – M 

– Replace A < 0? With A< M?

– If No, then A  A – M, Qn  1

– If Yes, then Qn  0 

– Now we don’t need to worry 
about restoring A

• At the conclusion of the operation

– the quotient is in Q 

– and any remainder is in A

Division Algorithm This algorithm

only works on

positive values

(unsigned)

We will not cover

a division

algorithm for

two’s complement



Division Example:  7 / 3
A Q M 

0000   0111        0011    Initial Values

0000   1110        Shift A/Q left 1 bit

Since A < M, insert 0 into Q0

0001   1100        Shift A/Q left 1 bit

Since A < M, insert 0 into Q0

0011   1000        Shift A/Q left 1 bit

0000   1001 Since A >= M, AA-M, insert 1 into Q0

0001   0010        Shift A/Q left 1 bit

Since A < M, insert 0 into Q0

Done (4 shifts)

Result:  Q = 0010, A = 0001 

A = remainder (1) and Q = quotient (2) or 7 / 3 = 2  1 / 3



Bias Representation
• We can use unsigned magnitude to represent 

both positive and negative numbers by using a 
bias, or excess, representation
– The entire numbering system is shifted up some 

positive amount
• To get a value, subtract it from the excess

– For instance, in excess-16, we subtract 16 from the 
number to get the real value (11001 in excess-16 is 11001 
– 10000 in binary = 01001 = +9)

– To use the representation
• numbers have to be shifted, then stored, and then 

shifted back when retrieved
– this seems like a disadvantage, so we won’t use it to 

represent ordinary integer values

– but we will use it to represent exponents in our floating 
point representation (shown next)

Excess-8 Notation

0000 -8 

0001 -7

0010 -6

0011 -5

0100 -4

0101 -3

0110 -2

0111 -1

1000 0

1001 1

1010 2

1011  3

1100 4

1101 5

1110 6

1111 7



Floating Point Representation
• Floating point numbers have a floating decimal point

– Recall the fraction notation used a fixed decimal point

– Floating point is based on scientific notation
• 3518.76 = .351876 * 104

• We represent the floating point number using 2 integer values called 
the significand and the exponent, along with a sign bit

– The integers are 351876 and 4 for our example above

– For a binary version of floating point, we use base 2 instead of 
10 as the radix for our exponent

– We store the 2 integer values plus the sign bit all in binary
• We normalize the floating point number so that the decimal is implied 

to be before the first 1 bit, and in shifting the decimal point, we 
determine the exponent

• The exponent is stored in a bias representation to permit both positive 
and negative exponents

• The significand is stored in unsigned magnitude



Examples
• Here, we use the following 14-bit representation:

Sign bit = 0 (positive)

Exponent = 5 (10101 – 10000 = 5)

Significand = .10001000

We shift the decimal point 5 positions giving us 10001.0 = +17

Sign bit = 0 (positive)

Exponent = -2 (01110 – 10000 = -2)

Significand = .10000000

We shift the decimal point 2 positions to the left,

giving us 0.001 = +.125

Sign bit = 1 (negative)

Exponent = 3 (10011 – 10000 = 3)

Significand = .11010100

We shift the decimal point 3 positions to the right,

giving 110.101= -6.625

Exponents

will be stored

using excess-16



Floating Point Formats and Problems
• To provide a standard for 

all architectures, IEEE 
provides the following 
formats:
– Single precision 

• 32-bits:  1-bit sign, 8-bit 
exponent using excess-127, 
23-bit significand

– Double precision 
• 64-bits:  1-bit sign, 11-bit 

exponent using excess-
1023, 52-bit significand

– IEEE also provides NAN for 
errors when a value is not 
a real number

• NAN = not a number

• Problems
– there are numerous ways 

to represent the same 
number (see page 58), but 
because we normalize the 
numbers, there will 
ultimately be a single 
representation for the 
number

– Errors arise from 
• overflow (too great a 

positive number or too 
great a negative number) –
overflowing the signficand

• underflow (too small a 
fraction) – overflowing the 
exponent



Representing Characters
• We use a code to represent characters

– EBCDIC – developed for the IBM 360 and used in all IBM 
mainframes since then

• An 8-bit representation for 256 characters 

– ASCII – used in just about every other computer
• A 7-bit representation plus the high-order bit used for parity

– Unicode – newer representation to include non-Latin based 
alphabetic characters

• 16 bits allow for 65000+ characters

• It is downward compatible with ASCII, so the first 128 characters 
are the same as ASCII

– See figures 2.6-2.8



Error Detection
• Errors will still arise, 

so we should also 
provide error 
detection and 
correction 
mechanisms
– One method is to 

add a checksum to 
each block of data

• Bits are appended 
to every block that 
somehow encode 
the information

• One common form 
is the CRC 

– Cyclic 
redundancy 
check

– see pages 81-84 
for details

• Simpler approach is to use a parity bit 
to every byte of information
– Add up the number of 1 bits in the byte, 

add a bit so that the number of total 1s is 
even 

• 00101011 has a parity bit of 0, 11100011 
has a parity bit of 1

– With more parity bits, we can not only 
detect an error, but correct it, or detect 2 
errors

• Hamming Codes are a common way to 
provide high redundancy on error 
checking
– We will skip the discussion on Hamming 

Codes, but if you want to read it, its on 
pages 84-90 of the textbook)
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